The Double Power Law in Consumption and Implications for Estimating Asset Pricing Models

Alexis Akira Toda¹ Kieran Walsh²

 1 UCSD

²Yale University

December 12, 2013

A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =

U.S. household log consumption is bell-shaped...

→ 글 ▶ _ 글 남

Introduction Double power law in consumption

Asset pricing models Estimation and robustness

... but has heavier tails than normal.

315

Questions

- How is consumption distributed?
- Why does consumption exhibit heavy (power law) tails?
- What are the practical implications of power law, especially for estimating heterogeneous-agent, consumption-based asset pricing models (cCAPM)?
- I How can we circumvent the power law issue in estimation?

김 국가 김 국가 모님

Contributions

- Stablish double power law (Toda, 2012a) in U.S. cross-sectional household consumption data, with power law exponent ≈ 4 in both tails.
- Holding the data sample constant, reestimate and compare all heterogeneous-agent asset pricing models of the literature.
 - Provide evidence suggesting power law tails cause GMM spuriousness. (Main tool: bootstrap samples.)
 - Propose power law-robust estimation methods but reject all existing models. (Exploit within cohort log-normality.)
- Illustrate GMM failure through Monte Carlo studies with simulated data from the GE model of Toda (2012b), which generates the consumption power law.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 → り Q (>

Literature

Power law Pareto (1896), Mandelbrot (1960, 1961, 1963), Gabaix (1999, 2009), Reed (2001, 2003), Toda (2011, 2012a, 2012b)

Heterogeneous-agent cCAPM Constantinides & Duffie (1996), Brav Constantinides, & Geczy (2002), Cogley (2002), Balduzzi & Yao (2007), Kocherlakota & Pistaferri (2009), Ludvigson (2013)

伺 ト イヨト イヨト ヨヨ つくべ

Definition Data Consumption Consumption growth

Double power law

- Nonnegative random variable X obeys
 - power law (in upper tail) if $P(X>x)\sim x^{-lpha}$ as $x
 ightarrow\infty$,
 - power law (in lower tail) if $P(X < x) \sim x^{eta}$ as x
 ightarrow 0,
 - double power law if power law holds in both tails.
- $\alpha, \beta > 0$: power law exponents.
- Canonical example is double Pareto distribution (Reed, 2001):

$$f(x) = \begin{cases} \frac{\alpha\beta}{\alpha+\beta} \frac{1}{M} \left(\frac{x}{M}\right)^{-\alpha-1}, & (x > M) \\ \frac{\alpha\beta}{\alpha+\beta} \frac{1}{M} \left(\frac{x}{M}\right)^{\beta-1}, & (x \le M) \end{cases}$$

where M: mode.

 Product of independent double Pareto and lognormal variables = double Pareto-lognormal (dPIN) (Reed, 2003).

(4月) (日) (日) (日) (1000)

Definition Data Consumption Consumption growth

Laplace and normal-Laplace (NL) distributions

• Log of double Pareto is Laplace distribution:

$$f(x) = \begin{cases} \frac{\alpha\beta}{\alpha+\beta} e^{-\alpha(x-m)}, & (x > m) \\ \frac{\alpha\beta}{\alpha+\beta} e^{\beta(x-m)}, & (x \le m) \end{cases}$$

where $m = \log M$: mode.

• If X: normal and Y: Laplace, then X + Y: normal-Laplace.

Ζ	log Z
lognormal	normal
double Pareto	Laplace
dPIN	normal-Laplace

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Theoretical emergence of double power law

GE model of Toda (2012b):

- With multiplicative (aggregate & idiosyncratic) shocks and homothetic preferences, an agent's consumption is proportional to wealth ⇒ Gibrat's law. • Model
- Geometric sums of independent random variables are approximately Laplace. Limit theorem
- Hence if agents (households/dynasties) die at a constant Poisson rate and are reborn (so age distribution is geometric), the cross-sectional distribution of log wealth is approximately Laplace, independent of the return distribution.
- Wealth and consumption distributions are double Pareto, because Laplace is log of double Pareto.

Definition **Data** Consumption Consumption growth

Data

- Kocherlakota and Pistaferri (2009):
 - Available on JPE website.
 - Consumer Expenditure Survey from December 1979 to February 2004.
 - Nondurable consumption, seasonally adjusted, deflated by CPI.
- NBER website CEX extracts:
 - Age of head of household (for forming cohorts).

Definition Data Consumption Consumption growth

Histogram of log consumption and normal-Laplace density

글 🛌 글 🔁

Definition Data **Consumption** Consumption growth

QQ plot (normal distribution)

Definition Data Consumption Consumption growth

QQ plot (normal-Laplace distribution)

Definition Data **Consumption** Consumption growth

Power law exponent

Figure: Power law exponent

< 17 >

3

3

三日 のへの

Definition Data **Consumption** Consumption growth

Evidence for consumption

- Kolmogorov-Smirnov test fails to reject dPIN in 79 out of 98 quarters, while rejects lognormal in 73 quarters at significance level 0.05.
- Anderson-Darling test (puts more weight on tails) fails to reject dPIN in 64 quarters, while rejects lognormal in 92 quarters.
- Likelihood ratio test rejects lognormal against dPIN in all but 1 quarter.
- Power law exponent \approx 4 and in the range [3.0, 5.5].
- Double power law disappears within age cohort (c.f., Battistin, Blundel, & Lewbel, 2009).
 ⇒ Suggests importance of age for generating power law, as predicted by model.

<ロ> (日) (日) (日) (日) (日) (日) (0) (0)

Definition Data Consumption Consumption growth

Histogram of log consumption growth

Figure: March 1985

315

Definition Data Consumption Consumption growth

Power law exponent

Figure: Power law exponent

< 冊

3

문 문

Definition Data Consumption Consumption growth

Evidence for consumption growth

- Kolmogorov-Smirnov test fails to reject dPIN in 265 out of 291 months, while rejects lognormal in all but 3 months at significance level 0.05.
- Anderson-Darling test (puts more weight on tails) fails to reject dPIN in 260 months, while rejects lognormal in every single month.
- Likelihood ratio test rejects lognormal against dPIN in every single month.
- Power law exponent \approx 4 and in the range [3.0, 5.5].

(4月) (日) (日) (日) (1000)

Stochastic discount factors GMM estimation

Baseline Model

- Agents i = 1, 2, ..., I.
- Assume agents have identical CRRA utility function

$$\Xi_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\gamma}}{1-\gamma},$$

where β : discount factor, γ : relative risk aversion.

• Assume agents face budget constraints but no financing frictions.

伺 ト イヨト イヨト ヨヨ つくべ

Stochastic discount factors GMM estimation

Asset pricing in complete markets

Euler equation

$$c_{it}^{-\gamma} = \mathsf{E}_{it}[\beta c_{i,t+1}^{-\gamma} R_{t+1}],$$

where *i*: household index, R_{t+1} : any gross asset return.

- Stochastic discount factor or pricing kernel: $\beta(c_{i,t+1}/c_{it})^{-\gamma}$.
- With complete markets, can substitute aggregate consumption.
- Equity premium puzzle: aggregate consumption and equity premium data are not consistent with this model (Hansen & Singleton, 1982, 1983; Mehra & Prescott, 1985).

(4月) (日) (日) (日) (1000)

Stochastic discount factors GMM estimation

Asset pricing in incomplete markets

- Aggregate consumption is relevant only with complete markets incomplete markets models and consumption panel data (CEX).
- Euler equation

$$c_{it}^{-\gamma} = \mathsf{E}_{it}[\beta c_{i,t+1}^{-\gamma} R_{t+1}]$$

still valid in incomplete markets.

• What if *c_{it}*'s are measured poorly or we only see agent *i* for a few *t*'s?

伺 ト イヨト イヨト ヨヨ つくべ

Stochastic discount factors GMM estimation

Aggregation 1

- Rewrite Euler equation as $1 = E_{it}[\beta(c_{i,t+1}/c_{it})^{-\gamma}R_{t+1}].$
- Taking unconditional expectations with respect to *i*,

$$1 = \mathsf{E}_t[\beta \, \mathsf{E}_{t+1}[(c_{i,t+1}/c_{it})^{-\gamma}]R_{t+1}].$$

• Ignoring β ,

$$\widehat{m}_{t+1}^{\text{IMRS}} = \frac{1}{I} \sum_{i=1}^{I} \left(\frac{c_{i,t+1}}{c_{it}} \right)^{-\gamma} \approx \mathsf{E}_{t+1}[(c_{i,t+1}/c_{it})^{-\gamma}]$$

is a valid stochastic discount factor (SDF) (Brav, Constantinides, & Geczy, 2002; Cogley, 2002). (IMRS = Intertemporal Marginal Rate of Substitution)

(4月) (日) (日) (日) (1000)

Stochastic discount factors GMM estimation

Aggregation 2

• Averaging Euler equation $c_{it}^{-\gamma} = \mathsf{E}_{it}[\beta c_{i,t+1}^{-\gamma} R_{t+1}]$ directly,

$$\widehat{m}_{t+1}^{\mathrm{MU}} = \widehat{C}_{-\gamma,t+1}/\widehat{C}_{-\gamma,t}$$

is a valid SDF (Balduzzi & Yao, 2007), where $\widehat{C}_{\eta,t} := \frac{1}{T} \sum_{i=1}^{I} c_{it}^{\eta}$ is η -th cross-sectional sample moment of consumption. (MU = Marginal Utility)

• Kocherlakota & Pistaferri (2009) start with inverse Euler equation and derive

$$\widehat{m}_{t+1}^{\mathrm{PIPO}} = \widehat{C}_{\gamma,t}/\widehat{C}_{\gamma,t+1}.$$

(PIPO = Private Information with Pareto Optimality)

Stochastic discount factors GMM estimation

Estimation and Fit

• For $j \in \{RA, IMRS, MU, PIPO\}$, acquire/clean CEX data, and let

$$\mathcal{P}\mathcal{E}_{T}^{j}(\gamma) = rac{1}{T} \sum_{t=1}^{T} \widehat{m}_{t}^{j}(\gamma) \left(\mathcal{R}_{t}^{s} - \mathcal{R}_{t}^{b}
ight),$$

 $\widehat{\gamma}^{j} = rgmin_{\gamma} T \left(\mathcal{P}\mathcal{E}_{T}^{j}(\gamma)
ight)^{2},$

where $\widehat{m}_{t}^{j}(\gamma)$ is SDF, R_{t}^{s} : stock return, R_{t}^{b} : bond return.

- The pricing error is $PE_T^j(\widehat{\gamma}^j)$.
- Reject the model if
 - $PE_T^j(\widehat{\gamma}^j) \neq 0$ when exactly identified,
 - high J-statistic when over-identified.

伺 ト イヨト イヨト ヨヨ つくべ

Stochastic discount factors GMM estimation

RRA γ and tests of SDFs in literature

Paper	Sample	IMRS	MU	PIPO
BCG (2002)	1982–1996	√3.5		
Cogley (2002)	1980–1994	Х		
BY (2007)	1982–1995	Q:√5 M:X	√ 10	
KP (2009)	1980–2004		Х	√5

• In order for GMM estimation to be consistent, need

- $\bullet~-\gamma\text{-th}$ moment of consumption growth for IMRS,
- $-\gamma$ -th moment of consumption for MU,
- γ -th moment of consumption for PIPO.
- But all γ estimates in moment non-existent region!

伺 ト イヨト イヨト ヨヨ つくべ

Stochastic discount factors GMM estimation

Ludvigson (2013)

"The mixed results seem to depend sensitively on a number of factors, including the sample, the empirical design, on the method for handling and modeling measurement error, the form of cross-sectional aggregation of Euler equations across heterogeneous agents, and the implementation, if any, of linear approximation of the pricing kernel. A tedious but productive task for future work will be to carefully control for all of these factors in a single empirical study, so that researchers may better assess whether the household consumption heterogeneity we can measure in the data has the characteristics needed to explain asset return data."

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 → り Q (>

Estimation exercises Results with actual data Results with simulated data

Estimation of asset pricing models

Estimate RA (representative agent), IMRS •••, MU •••, PIPO ••• model by GMM for

- single equation with full sample,
- single equation without top and bottom 100 consumption data points out of 410,708 (dropping less than 0.05% of sample),
- overidentified model by dividing sample into age cohorts (household head age 30 or less, 30s, 40s, 50s, 60 or more).

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 → り Q (>

Estimation exercises Results with actual data Results with simulated data

Results with and without top and bottom 100 points

	Full KP sample		Without Outliers	
Model	RRA (γ)	Pricing error	RRA (γ)	Pricing error
	53.26		53.10	
RA	(29.41)	0.000	(30.85)	-0.000
	(20.19)		(21.24)	
	0.03		0.03	
IMRS	(1035)	0.019	(1297)	0.019
	(0.08)		(0.21)	
	1.52		2.51	
MU	(5698)	0.019	(9960)	0.019
	(0.90)		(1.86)	
	5.33		2.23	
PIPO	(1.42)	0.000	(8010)	0.019
	(1.98)		(1.68)	

Alexis Akira Toda & Kieran Walsh Double Power Law in Consumption and Asset Pricing

-)40

Estimation exercises Results with actual data Results with simulated data

GMM criterion with and without top and bottom 100

Alexis Akira Toda & Kieran Walsh Double Power Law in Consumption and Asset Pricing

글 🛌 글 🔁

Estimation exercises Results with actual data Results with simulated data

Histogram of bootstrapped PIPO pricing errors

Tool: stationary bootstrap (Politis & Romano, 1994) 💽

Alexis Akira Toda & Kieran Walsh Double Power Law in Consumption and Asset Pricing

Estimation exercises Results with actual data Results with simulated data

Scatter plot of bootstrapped PIPO RRA estimates and pricing errors

Estimation exercises Results with actual data Results with simulated data

Robust estimation using age data

- According to theory, power law emerges from geometric age distribution.
- In fact, power law disappears within age cohorts (Battistin, Blundel, & Lewbel, 2009).
- Dividing sample into age cohorts, we can estimate and test overidentified model without power law issue.

$$PE_{T}^{j}(\gamma) = \frac{1}{T} \sum_{t=1}^{T} \begin{bmatrix} \widehat{m}_{t}^{j,1}(\gamma) \\ \vdots \\ \widehat{m}_{t}^{j,5}(\gamma) \end{bmatrix} \left(R_{t}^{s} - R_{t}^{b} \right)$$
$$\widehat{\gamma}^{j} = \arg\min_{\gamma} T \left(PE_{T}^{j}(\gamma) \right)' W \left(PE_{T}^{j}(\gamma) \right)$$

< 3 > < 3 >

Estimation exercises Results with actual data Results with simulated data

Robust GMM estimation of RRA γ and P value

Model	RRA (γ)	P value
RA	2.62 (1.68)	0.00
IMRS	0.04 (0.10)	0.00
MU	1.22 (0.63)	0.00
PIPO	1.88 (0.88)	0.00

• γ estimates reasonable, but all models rejected.

(4月) (日) (日) (日) (1000)

Estimation exercises Results with actual data Results with simulated data

Histogram of bootstrapped PIPO pricing errors with robust GMM estimation

Alexis Akira Toda & Kieran Walsh

Double Power Law in Consumption and Asset Pricing

ъ

Estimation exercises Results with actual data Results with simulated data

Using simulated data

- So far, our evidence is indirect since assume model is true.
- Here we construct an artificial economy from a model based on Toda (2012b) • details and estimate parameters using both true and false data.
- Agents i = 1,..., I have identical additive CRRA preferences and two linear technologies (stock market & private equity).
- Both technologies subject to aggregate shock, private equity subject to idiosyncratic shock.
- MU SDF **1** is valid.

Estimation exercises Results with actual data Results with simulated data

Calibration

-

Table: Parameters

β	0.96		
γ	4		
δ	1/75		
μ_{s}	0.07	σ_{s}	0.15
μ_{p}	0.07	σ_p	0.1
ρ	0.5	σ_i	0.15
1	4000	σ_0	0.5
Т	300	σ_{ϵ}	0.25

Table: Implied values

PL exponent α	3.24
Risk-free rate	1.14%
Equity premium	5.86%

- ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 三目目 - 釣�()や

- All values in annual frequency, but simulate as quarterly data.
- Since $\alpha = 3.24 < 4 = \gamma$, GMM estimation inconsistent.

Estimation exercises Results with actual data Results with simulated data

Scatter plot of simulated MU RRA estimates and pricing errors (true data)

Alexis Akira Toda & Kieran Walsh Double Power Law in Consumption and Asset Pricing

315

Estimation exercises Results with actual data Results with simulated data

Multiple troughs

- In 54/200 simulations, the criterion has multiple troughs.
- The 10th and 90th percentiles for these second troughs are 6.7 and 19.4.
- In 12 of these runs, only the spurious trough is close to zero.

Figure: MU GMM criterion from simulation 9. Example 1

Estimation exercises Results with actual data Results with simulated data

MU RRA estimates and pricing errors with false stock returns (i.i.d. copy)

A B M A B M

315

Conclusion

- Consumption and consumption growth obey double power law with exponent \approx 4. (We are the first to document this.)
- Power law appears to contaminate GMM estimation and mechanically zero-out pricing errors.

 \Rightarrow stationary bootstrap is useful for detecting spurious results.

- With age cohort robust estimation or without outliers, we reject all asset pricing models
 - \Rightarrow Need better models (work in progress).
 - drop preference homogeneity.
 - include household financial frictions.

伺 ト イヨト イヨト ヨヨ つくべ

Appendix

Tractable GEI with heterogeneous agents

• Agents i = 1, ..., I have identical additive CRRA preference

$$\mathsf{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\gamma}}{1-\gamma}.$$

- Initial endowment (capital) $w_0 > 0$, nothing in future.
- Constant-returns-to-scale technology j = 1, ..., J. Total returns to capital (productivity) for agent i between time t and t + 1 is A^j_{i,t+1}. A_{i,t+1} = (A¹_{i,t+1},..., A^J_{i,t+1}) i.i.d. over time.
- Each technology have aggregate and idiosyncratic component: $A_{i,t+1}^{j} = a_{i,t+1}^{j} A_{t+1}^{j}$. Idiosyncratic shock \mathbf{a}_{t+1} i.i.d. across agents conditional on aggregate shock \mathbf{A}_{t+1} .

A = A = A = A = A = A = A = A

Solving for GEI

• Let θ^j be fraction of wealth invested in technology j and

$$R_{i,t+1}(heta) = \sum_{j=1}^J A_{i,t+1}^j heta^j$$

total returns of wealth portfolio.

• Optimal consumption and portfolio rule

$$egin{aligned} & heta^* = rg\max_{ heta} rac{1}{1-\gamma} \, \mathsf{E}[R(heta)^{1-\gamma}], \ & c(w) = \left(1 - (eta \, \mathsf{E}[R(heta^*)^{1-\gamma}])^{rac{1}{\gamma}}
ight) w. \end{aligned}$$

• Asset prices $P_t = \frac{\mathsf{E}[R(\theta^*)^{-\gamma}(P_{t+1}+D_{t+1})]}{\mathsf{E}[R(\theta^*)^{1-\gamma}]}.$

Cross-sectional consumption distribution

- If agents infinitely lived, by CLT cross-sectional consumption distribution approximately lognormal.
- If agents die with probability δ between periods and capital distributed across newborn agents, by Limit Theorem cross-sectional consumption distribution double Pareto.
- If capital distributed according to lognormal, then cross-sectional consumption distribution dPIN •••
- Power law exponent $\alpha = \sqrt{2\delta}/\sigma$, where σ : idiosyncratic volatility of portfolio return.

• • = • • = • = •

Theoretical emergence of double power law

Theorem (Toda 2012b)

Suppose that

- {X_n}[∞]_{n=1} is a sequence of zero mean random variables such that the central limit theorem holds,
- **2** $\{a_n\}_{n=1}^{\infty}$ is a sequence such that $N^{-1}\sum_{n=1}^{N} a_n \rightarrow a$, and
- ν_p is a geometric random variable with mean 1/p independent from {X_n}[∞]_{n=1}.

Then as $p \to 0$ the geometric sum $p^{\frac{1}{2}} \sum_{n=1}^{\nu_p} (X_n + p^{\frac{1}{2}}a_n)$ converges in distribution to a Laplace distribution.

(*) *) *) *)

Double Power Law in Consumption and Asset Pricing

• • = • • = • = •

Theoretical emergence of double power law

- In the model, log wealth for an agent is the sum of period log returns over his lifespan, which is a geometric random variable.
- Using the theorem, one can show that as the time step goes to 0 log wealth converges in distribution to a Laplace distribution.
- Laplace distribution is log of double Pareto.

Alexis Akira Toda & Kieran Walsh

• See Toda (2012b) "Incomplete Market Dynamics and Cross-Sectional Distributions" for further details.

Stationary bootstrap

Explore role of power law and calculate test statistics using the stationary bootstrap of Politis & Romano (1994). t = 1, 2, ..., T: time index of original sample. Construct bootstrap sample as follows:

- **Q** Randomly pick τ_1 from $\{1, \ldots, T\}$.
- **2** Having picked τ_n , with probability 1 p set $\tau_{n+1} = \tau_n + 1$ modulo T, and with probability p pick τ_{n+1} randomly from $\{1, \ldots, T\}$.

Solution Here
$$p = 1/M(T)$$
, where $M(T) \to \infty$ and $M(T)/T \to 0$ as
T → ∞. (We set $M(T) = \sqrt{T}$.)

Account for cross-sectional uncertainty, unlike previous papers.

周 ト イヨ ト イヨ ト ヨ ヨ つくつ